Power inequalities and spectral dominance of generalized matrix norms

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The generalized spectral radius and extremal norms

The generalized spectral radius, also known under the name of joint spectral radius, or (after taking logarithms) maximal Lyapunov exponent of a discrete inclusion is examined. We present a new proof for a result of Barabanov, which states that for irreducible sets of matrices an extremal norm always exists. This approach lends itself easily to the analysis of further properties of the generali...

متن کامل

Inequalities for Unitarily Invariant Norms and Bilinear Matrix Products

We give several criteria that are equivalent to the basic singular value majorization inequality (1.1) that is common to both the usual and Hadamard products. We then use these criteria to give a uniied proof of the basic majorization inequality for both products. Finally, we introduce natural generalizations of the usual and Hadamard products and show that although these generalizations do not...

متن کامل

Power matrix means and related inequalities ∗

This survey paper contains recent results for power matrix means and related inequalities for convex functions, Hadamard product of matrices as well as some inequalities involving exponential function of matrices.

متن کامل

Estimating Dominance Norms of Multiple Data Streams

There is much focus in the algorithms and database communities on designing tools to manage and mine data streams. Typically, data streams consist of multiple signals. Formally, a stream of multiple signals is (i, ai,j) where i’s correspond to the domain, j’s index the different signals and ai,j ≥ 0 give the value of the jth signal at point i. We study the problem of finding norms that are cumu...

متن کامل

Generalized matrix functions, determinant and permanent

In this paper, using permutation matrices or symmetric matrices, necessary and sufficient conditions are given for a generalized matrix function to be the determinant or the permanent. We prove that a generalized matrix function is the determinant or the permanent if and only if it preserves the product of symmetric permutation matrices. Also we show that a generalized matrix function is the de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1979

ISSN: 0024-3795

DOI: 10.1016/0024-3795(79)90125-3